
Research Report
KTC-15-18/SPR15-502-1F
DOI: http://dx.doi.org/10.13023/KTC.RR.2015.18
	

	

	

Identifying Significant Environmental Features Using Feature
Recognition

 Our Mission

We provide services to the transportation community through research,
technology transfer and education. We create and participate in partnerships to

promote safe and effective transportation systems.	

© 2015 University of Kentucky, Kentucky Transportation Center
Information may not be used, reproduced, or republished without our written consent.	

Kentucky Transportation Center
176 Oliver H. Raymond Building

Lexington, KY 40506-0281
(859) 257-4513
fax (859) 257-1815

www.ktc.uky.edu	

Research Report
KTC-15-18/SPR15-502-1F

IDENTIFYING SIGNIFICANT ENVIRONMENTAL FEATURES USING FEATURE
RECOGNITION

By

Megan White, MA
Research Associate

Junfeng Zhu

Research Associate

Benjamin Blandford, PhD
Research Scientist

and

Ted Grossardt, PhD
Program Manager

Kentucky Transportation Center

College of Engineering
University of Kentucky

Lexington, Kentucky

In cooperation with
Kentucky Transportation Cabinet

Commonwealth of Kentucky

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data
presented herein. The contents do not necessarily reflect the official views or policies of the University of Kentucky,
the Kentucky Transportation Center, the Kentucky Transportation Cabinet, the United States Department of
Transportation, or the Federal Highway Administration. This report does not constitute a standard, specification, or
regulation. The inclusion of manufacturer names or trade names is for identification purposes and should not
be considered an endorsement.

October 2015

1. Report No.
KTC-15-18/SPR15-502-1F

2. Government Accession No.

3. Recipient’s Catalog No

4. Title and Subtitle
Identifying Significant Environmental Features Using Feature
Recognition

5. Report Date
October 2015

6. Performing Organization Code

7. Author(s):
Megan White, Junfeng Zhu, Benjamin Blandford, and Ted Grossardt

8. Performing Organization Report No.
KTC-15-18/SPR15-502-1F

9. Performing Organization Name and Address
Kentucky Transportation Center
College of Engineering
University of Kentucky
Lexington, KY 40506-0281

10. Work Unit No. (TRAIS)

11. Contract or Grant No.
 SPR15-502

12. Sponsoring Agency Name and Address
Kentucky Transportation Cabinet
State Office Building
Frankfort, KY 40622

13. Type of Report and Period Covered

14. Sponsoring Agency Code

15. Supplementary Notes
Prepared in cooperation with the Kentucky Transportation Cabinet

16. Abstract

The Department of Environmental Analysis at the Kentucky Transportation Cabinet has expressed an interest in feature-
recognition capability because it may help analysts identify environmentally sensitive features in the landscape,
including those relating to historic preservation, archaeology, endangered species habitat, and geology. LIDAR Analyst
and Feature Analyst are a pair of geoprocessing software packages that have been developed by Textron Systems.
Using this software, users can use LIDAR data to identify finely-scaled user-specified features. The software’s
automated feature extraction saves time that might otherwise be spent manually analyzing images and digitizing
features.

This report explores the capabilities and accuracy of this software by using LIDAR data to identify sinkholes
throughout a small area in Kentucky. This report also discusses an alternative LIDAR-based geoprocessing methodology
developed by the Kentucky Geological Society. The method relies on ArcGIS and Python scripting to identify sinkholes.
The feasibility and applicability of these methodologies are compared, the workflow for each method is outlined, and the
capabilities and limitations of each are noted. Sample results—the identification of sinkholes—from each methodology
are presented. The research team found the batch processing capability built into LIDAR and Feature Analyst adequate
and beneficial for smaller projects, such as projects that prioritize the extraction of buildings, trees, and forest regions.

17. Key Words
LIDAR, Feature Analyst, ArcGIS, Python, sinkholes, automated feature
extraction

18. Distribution Statement

19. Security Classification (report)
Unclassified

20. Security Classification (this page)
Unclassified

21. No. of Pages
 35

19. Security
Classification
(report)

Table of Contents

1 Executive Summary .. 5

2 Identifying Sinkholes Using Feature Analyst and LIDAR Analyst .. 7

2.1 The Software ... 7

2.2 Workflow and Capabilities ... 8

2.3 Sinkhole Models ... 11

2.4 Results ... 16

3 Identifying Sinkholes Using a Python-based ArcGIS Tool .. 21

3.1 Tool Installation .. 21

3.2 Tool Instruction ... 23

3.3 Tool Testing .. 28

3.4 Discussion ... 29

4 Discussion ... 31

4.1 Recommendations for Future Sinkhole Modeling .. 31

4.2 Other Modeling Features .. 32

5 Conclusions ... 34

6 Works Cited .. 35

List of Figures
Figure 1: Map showing features removed to create bare earth layer. Building footprints are
outlined in black; tree crowns are outlined in blue. .. 9
Figure 2: Map demonstrating the clean-up process. .. 10
Figure 3: Study area within the Floyds Fork watershed. ... 12
Figure 4: Delineation of sinkhole training polygons begins with finding depressions in the
topographic position index (TPI) raster. ... 14
Figure 5: Cleanup of initial results layer. ... 18
Figure 6: Verified sinkholes that were not returned by any of the models. 20
Figure 7: File tree for the ArcGIS tool. .. 21
Figure 8: Add Toolbox menu. .. 22
Figure 9: Add Toolbox dialog box. .. 22
Figure 10: The LIDAR sinkhole recognition tool shown in ArcGIS. .. 22
Figure 11: Script tool properties dialog box showing name of the script file. 23
Figure 12: Interface of script tool "Step 1a: Extract Depressions from DEM." 24
Figure 13: Example results of script tool "Step 1a: Extract Depressions from DEM." 24
Figure 14: Interface of script tool "Step 1b: Extract Depressions from LIDAR." 25
Figure 15: Interface of script tool "Step 2: Remove Non-Sinkholes Based on Surficial Features."
... 26
Figure 16: Example results of script tool "Step 2: Remove Non-Sinkholes Based on Surficial
Features." .. 27
Figure 17: Interface of script tool "Step 3: Random Forests Classification." 28
Figure 18: Example results of script tool "Step 3: Random Forests Classification." 28
Figure 19: Test results showing: a) sinkholes previously mapped; and b) sinkholes identified
from this tool. .. 29

List of Tables
Table 1: Setup details for five models tested. .. 15
Table 2: Results of the five tested models after the first learning pass and clean-up. 17
Table 3: Script tools and the corresponding python scripts. .. 23

5

1 Executive Summary

Technological advances of the past decades have given rise to increasingly sophisticated
photogrammetry and remote sensing techniques that have revolutionized terrain analysis.
LIDAR has provided imagery of the earth’s surface at an unprecedented level of detail. The
Kentucky Transportation Cabinet (KYTC) has been acquiring larger amounts of high-quality
LIDAR data for the state. Within this data there appear to be archaeological features and
historical features that are better delineated than by current information sources. In Kentucky,
archaeological features such as mounds and building foundations, natural features like sinkholes,
and culturally or otherwise significant features like stone fences and cemeteries must be taken
into account when road construction or maintenance activities are planned. When planning
maintenance and when taking inventory of features, it is valuable to know the locations of
engineered structures such as culverts.

Obtaining highly detailed imagery to conduct terrain analysis is easier than ever, but processing
data can be difficult when dealing with large files sizes. Automated feature extraction programs
offer one solution for analyzing large volumes of fine-grained data. These programs omit
extraneous data components during processing and maximize resources for detecting features of
interest. One of these applications, Feature Analyst, has the potential to assist users in efficiently
identifying such features. Automated feature extraction saves time that might otherwise be spent
manually analyzing images and digitizing features.

The purpose of this study was to summarize the functions and requirements of LIDAR Analyst
and Feature Analyst. This report analyzes and discusses the process of extracting features of
interest from LIDAR data. LIDAR Analyst transforms LIDAR data into products compatible
with Feature Analyst and its supervised learning process. In Feature Analyst, customized models
were created to extract sinkholes from the LIDAR Digital Elevation Models (DEMs). Model
results and their relevance to KYTC are presented in this report, and included are speculations of
Feature Analyst’s performance in modeling other features of interest.

This report also details the development and application of a Python-based ArcGIS tool that
identifies sinkholes across the landscape. While other types of geoprocessing innovations are
able to perform landscape feature identification in a similar way as LIDAR Analyst and Feature
Analyst, the python-based ArcGIS tool enables users to define the search criteria and to adjust
the parameters to optimize feature recognition. ArcGIS is less user friendly than LIDAR Analyst,
but it does have an extensive online support community and ample customization options for
users familiar with Python. Both tools were applied to the identification of sinkholes within the
Floyds Fork watershed, and the strengths and weaknesses were noted.

6

This research benefits the KYTC’s Division of Environmental Analysis (DEA) by clarifying the
positives and negatives of different methods of analyzing LIDAR data statewide. This
information can assist the DEA in deciding how and where to use LIDAR data to aid its analysis
of archaeological, environmental, and historic features. This research can be used to assess how
extensively new GIS-based analyses of LIDAR data can be incorporated into DEA business
processes over the long-term. The research establishes which landscape features can be
identified more efficiently and accurately using LIDAR data, and notes improvement over
current practices.

Performing more advanced extractions (i.e. buildings and trees) requires a much more complex
work flow. Before attempting large-scale projects with LIDAR and Feature Analyst, Condor’s
distributed batch processing software would have to be successfully installed. While Textron
tech support and programmers were willing to help, they were never able to provide a solution.
However, the batch processing capability built in to LIDAR and Feature Analyst would be
adequate for smaller projects. For projects that prioritize the extraction of buildings, trees, and
forest regions, having LIDAR Analyst would be beneficial.

7

2 Identifying Sinkholes Using Feature Analyst and LIDAR Analyst

2.1 The Software

LIDAR Analyst offers automated extraction of 3D features, such as bare earth, buildings, and
trees, from LIDAR (.las) data. There are user-friendly tools for cleaning up and otherwise
refining extraction results. For further data manipulation capabilities, the program’s 3D Viewer
allows users to filter and edit point clouds directly. Feature Analyst is a feature extraction
program that uses spectral information, spatial context, and physical characteristics of objects or
areas to extract them from an image. User-generated training data, size and shape parameters,
and templates that specify spatial context are the basis of the program’s hierarchical learning
process. After each feature is extracted, this can be increasingly modified until reasonable results
are achieved.

Both LIDAR and Feature Analyst are produced by Textron Systems. They are third-party
extensions of ArcGIS and can be used with ArcGIS 10 as well as with earlier versions. LIDAR
Analyst can work directly with .las files, or with secondary LIDAR products like digital
elevation models (DEMs). Feature Analyst learning models can use up to four bands of any
raster image for each extraction. Both extensions come with built-in batch processing
capabilities to manage extractions for large datasets. However, depending on the amount of data
that requires processing, Textron recommends also obtaining Condor1, a free, third-party
distributed batch processing program that prioritizes and monitors processes to ensure optimal
use of computing power. Textron Systems distributes a manual on acquiring and installing
Condor, but the process is complicated and non-intuitive. Furthermore, tech support and
engineers from Textron were never able to answer why Condor never worked properly on the
KTC computers used to conduct the analysis described in this report. This problem was never
resolved.

Because LIDAR and Feature Analyst are integrated into the ArcGIS interface, using them is very
straightforward for people already familiar with Arc. Both extensions also come with a tutorial,
an accompanying tutorial document outlining each step, and a reference manual. The tutorials
present the basic work flow that most users would employ in almost every type of project. The
tutorial document is exhaustive, describing software navigation, methodologies best suited for
particular datasets, and settings and parameters. The reference manuals are lengthy and include
descriptions of every tool the programs offer. Unlike with ArcGIS, online resources for LIDAR
and Feature Analyst are extremely limited. There are no user forums, nor are there tutorials or
other help documents online, other than those Textron provides with the software. The cost of a
license includes tech support from Textron agents, who have proven to be knowledgeable,

1 Available at https://research.cs.wisc.edu/htcondor/.

8

helpful, and in most cases, quick to respond to inquiries. The government pricing for Feature
Analyst and LIDAR Analyst is identical. A node-locked license is $3622.67, with an annual
maintenance fee of $1196.47. A floating (server-based) license is $4529.47, with an annual
maintenance fee of $1435.77.

2.2 Workflow and Capabilities

LIDAR Analyst works directly with .las files. Typically, LIDAR analysis begins with users
creating a bare earth image (i.e., DEM). This can be done by inputting a single or last return
point cloud, a multiple-return point cloud, or first and last return rasters. As a part of the bare
earth extraction process, LIDAR Analyst can also produce first and last return rasters and
intensity images. The bare earth extraction dialog box offers pre- and post-processing options,
including removing spikes and pits before processing, and smoothing the bare earth with a low
pass filter to remove low height objects such as cars and shrubs. The user can adjust various
parameters to control how the bare earth extraction treats tree and forest regions, ground slope
thresholds, and interpolation. After the bare earth image has been created, LIDAR Analyst has a
tool to manually edit results if there are irregularities.

After extracting bare earth, it is common to extract buildings, forests, and trees. There is a tool
to extract buildings and a combined tool for extracting forest areas and tree crowns (Figure 1).
Like the bare earth extraction tool, these have customizable parameters to let users specify
extraction methods, characteristics of the features themselves, and post-processing options. For
example, with the tree extraction tool dialog, the user can specify minimum tree height, typical
tree height, and the minimum area that can be classified as a forest. In addition to these basic
tools that most LIDAR Analyst projects require, the software has other tools for LIDAR data
management, bare earth analysis, and feature editing and enhancement.

9

Figure 1: Map showing features removed to create bare earth layer. Building footprints are
outlined in black; tree crowns are outlined in blue.

The first step in Feature Analyst’s workflow is creating a training dataset. Using an image of the
study area, the user manually digitizes examples of the features to be extracted. These training
polygons are input to the Learner, which houses the software’s adaptive learning component.
The user inputs one or multiple bands of an image (often the bare earth raster). The size and
shape of the search window and size thresholds for the features to be extracted is specified as
well. The user can also opt to use a mask: either to exclude areas where it is known that features
are irrelevant or non-existent, to indicate areas where knowledge of feature presence is needed,
or to mark where the user knows features exist. Areas can be masked by vector layers, by pixel
ranges, or by both. Masking reduces processing time and makes the clean-up process more
efficient. With this information, the Learner returns features that meet the specifications. Once
the first set of results are generated, a mark-up (clean-up) layer can be created to indicate
examples of both correct and incorrect result features, thus refining or reinforcing the model’s
framework (Figure 2). This step is repeated until results achieve the level of accuracy targeted
by the user.

10

Figure 2: Map demonstrating the clean-up process.

To support the software’s feature extraction component, other tools are included to manipulate
input images for easier extraction, and to edit and enhance the resulting features. A resampling
tool enables the modification of raster resolution to better highlight features of interest. Image
fusion lets users combine spectral information from multiple images into a single image. This is
particularly useful when the number of image input bands exceeds the limit. For example, a
Normalized Difference Vegetation Index could be fused to a bare earth image to highlight plant
biomass alongside elevation. In terms of enhancing results, one tool allows result polygons to be
rasterized and then eroded or dilated, to either sharpen polygon boundaries or connect them in a
more network-like result feature. Another tool lets users further refine size parameters by
specifying rules for aggregating features.

Both LIDAR and Feature Analyst rely on Automated Feature Extraction (AFE) files to track
workflows and allow processes and models to be replicated on different datasets. AFE files are
automatically saved in the same place as output files. Users can open these files and review the
parameters set for specific processes or models, or they can import them into the batch

11

processing interface. If a project involves replicating a process on several files or running
processes or models on very large areas, batch processing will be integral to LIDAR analysis and
Feature Analyst workflows.

2.3 Sinkhole Models

A 16-tile, approximately 6.8 mi² area within the Floyds Fork drainage was selected to model
sinkholes. This region is located on the Jefferson–Bullitt County border, approximately 5.5
miles east of Interstate 65, just northwest of Mount Washington (Figure 3). The 16-tile unit was
chosen because it was sizeable enough to feature adequate heterogeneity, but also small enough
to not require excessively long processing time. For the same model to be used across multiple
areas, the files had to be merged into either a single .las file, or a single DEM, so the 16 tiles for
each area were merged into single .las files using LAStools. These .las files were used in
LIDAR Analyst to create first and last return rasters. The first and last return rasters were used to
generate bare earth DEMs. Generating the bare Earth DEM had the longest run-time. For this
16-tile, 6.8 mi² area, generating the DEM took just under two hours.

12

Figure 3: Study area within the Floyds Fork watershed.

13

A high quality, representative training dataset is the basis of a good model in Feature Analyst.
Because sinkholes were not readily apparent in DEMs, additional data were required to create
training data. The bare earth DEM was used to create a topographic position index (TPI) raster
and a slopeshade raster. The TPI was based on an algorithm that assigned a pixel value--
calculated by finding the difference between its own elevation and the mean elevation of a user-
defined neighborhood of surrounding pixels. A higher value meant a pixel was located at a
higher elevation than nearby pixels; a lower value indicated it had a lower elevation than the
surrounding pixels. A TPI raster can be created from a DEM using Land Facet Corridor Tools, a
free ArcGIS extension available from Jenness Enterprises (Jenness et al. 2013). The slopeshade
image was created with the Spatial Analyst slope tool.

Employing the methods of Doctor and Young (2013), the TPI was examined to identify circular
or near-circular areas with significantly lower elevation values than surrounding areas. An area
that met this requirement would then be investigated on the slopeshade raster to determine
whether the feature appeared to be a closed or mostly closed depression. In non-forested and
otherwise high visibility areas, ESRI basemap imagery was also referenced to verify the presence
or absence of sinkholes, although in many cases this was not possible. Features meeting these
criteria were delineated and used to populate the sinkhole training dataset. Figure 4 illustrates
the process of creating training data.

14

Figure 4: Delineating sinkhole training polygons begins with finding depressions in the
topographic position index (TPI) raster (4a). Next, the slope raster is examined to verify an
enclosed or semi-enclosed depression (4b). Finally, imagery is checked to validate previous
findings. This will either rule the area out because of the presence of a feature that is not a
sinkhole (sometimes the process picks up humanly constructed drainage features and small
ponds), or confirm that the feature is, or likely is, a sinkhole. In the case of Figure 4c, a
depression is not clearly visible from the imagery because of dense vegetation. However, this is
an area of dense vegetation within a cleared field, so it is logical that a sinkhole could exist there.

Next, the training dataset was input into the Supervised Learning component of Feature Analyst.
Aside from the training dataset itself, several other parameters were specified in the Supervised
Learning dialog. The Feature Selector let users select from a list of basic feature types (Narrow
Linear Feature, Wide Linear Feature, Small Manmade Feature, Natural Feature, etc.), each of
which come with default model parameters. These defaults were most useful for initial learning
passes and can be modified to refine the model. Input Bands provided the spectral information
the model uses to locate features. Input Bands can be set to indicate reflectance, discrete pixel
values, elevation, and texture. Because elevation is a key component to differentiate sinkholes

15

from the broader landscape, all the models included bands that indicate elevation. Some of the
models also incorporated the slopeshade raster as a texture band.

Input Representation determined the shape and size of the search window that Supervised
Learning used to determine if pixels were part of a feature of interest. Many of the Input
Representation options were designed to extract linear features like sidewalks and streams and
other built features such as buildings. The representation options geared toward finding natural
features of varying sizes were Circle and Predefined Foveal. Trial and error proved the circle
option to be the most reliable for identifying sinkholes. In all models, several areas were masked
out of the learning process. Building footprints extracted in LIDAR Analyst were excluded from
the models. 30 foot corridors on each side of rivers, streams, and roads were excluded as well to
decrease false positives from ditches and other fluvial landforms. River and stream data were
obtained from the National Hydrography Dataset (http://nhd.usgs.gov/data.html). The road
centerline shapefile was obtained from the Kentucky Transportation Cabinet
(ftp://ftp.kymartian.ky.gov/trans/). Water bodies, also obtained from the National Hydrography
Dataset, were masked out as well.

In the Output Options tab of the Supervised Learning dialog, minimum and maximum feature
area and smoothing tolerance can be specified. Size parameters for these models were derived
from existing sinkhole shapefiles from the Kentucky Geological Survey
(http://www.uky.edu/KGS/gis/sinkpick.htm) and from LIDAR Sinkhole Extraction tools
(developed by Junfeng Zhu). Many models were tested for sinkhole extraction; Table 1 details
the setup for five models, the results of which are discussed in this report.

Table 1: Setup details for five models tested.

Input	Bands	
(Band	Type)

Input	Representation	
(Pattern	Width	

in	Pixels)

Minimum	
Area

Maximum	
Area

Model	1 DEM,	single	band	(elevation) Circle	(15) 450	ft
2

90,000	ft
2

Model	2
Hillshade,	band	1	(elevation)

Hillshade,	band	2	(elevation)

Hillshade,	band	3	(elevation)

Circle	(15) 450	ft
2

90,000	ft
2

Model	3 TPI	(elevation)

Slope	(texture)
Circle	(15) 450	ft

2
90,000	ft

2

Model	4 DEM,	single	band	(elevation) Circle	(15) 450	ft
2

30,000	ft
2

Model	5 DEM,	single	band	(elevation) Pre-defined	Foveal	(9) 450	ft
2

30,000	ft
2

16

Once the models were run, a mark-up (clean-up) layer was created to designate examples of
correctly and incorrectly returned features. During this process, correct and incorrect features
were selected and digitized, depending on the accuracy and precision of the model. Correct and
incorrect features were identified by using the same methods employed to create training data.
Samples of correct and incorrect features were selected in several areas of the image to ensure
representative feedback for the model. Then, the same model was run on the edited clean-up
layer to produce results defined by both the original model and by the clean-up specifications.
When running this iteration of the model, an option was available to remove clutter. This option
was based on shape attributes, and was always selected when running sinkhole models because it
reduced the number of shapes that were long and linear, angular, and otherwise uncharacteristic
of sinkholes.

On some occasions, running the model on the mark-up layer returned an empty feature class. In
these instances, the mark-up layer was edited further to ensure that the model had an adequate
number of correct features to learn from. Experimenting with this step showed that a ratio of no
greater than 2:1 incorrect to correct features consistently returned results.

2.4 Results

Several factors affected the results, particularly the model accuracy. Given that there was no
fieldwork conducted as part of this research, the research team was unable to validate results to
evaluate accuracy. Second, because this was a relatively broad pilot study, certain criteria such
as area of interest and sinkhole characteristics (e.g., size, or sinkhole density) in a given area
were left unspecified. Because the Learner in Feature Analyst operated on a holistic set of
detailed parameters, its accuracy may have declined when the features to be extracted had more
variable characteristics and occurred across a broader variety of landscapes. Likewise, if the
features to be extracted met certain specifications (i.e., occur within 100 feet of a road or had
areas of greater than 1000 feet²), the Learner’s accuracy and precision may have increased. That
said, there are factors in this study that helped verify the accuracy, and at least the logic, of the
models’ results. 12 verified sinkholes in the area of study were used as benchmarks for the
extracted features. Given the relatively small area of study, researchers visually examined the
results alongside detailed elevation layers, slope layers, and imagery. This was done to
qualitatively assess accuracy.

Table 2 summarizes the results of the five models after the first learning pass as well as after
clean-up. The table lists the total number of features returned by the models after each learning
pass, the number of features that intersect verified sinkhole polygons, and training data polygons.
The result table indicates only that result polygons intersect verified sinkhole polygons or
training polygons. In the majority of cases, this meant the result polygons loosely or closely
matched the outlines of the verified or training polygons. In a few cases, however, result
polygons intersected verified or training polygons without capturing the depression feature.

17

While training data polygons were carefully selected and digitized and were certainly depression
features in the landscape, there cannot be positive identification that they are sinkholes without
field verification.

Table 2: Results of the five tested models after the first learning pass and clean-up.

Initial learning pass results of Model 1 were surpassed by Model 3, but Model 1 had the greatest
number of features intersecting verified sinkholes and training polygons after the second learning
pass. Model 2 had comparable results to Models 1 and 3 after the first learning pass, but its
accuracy deteriorated following clean-up. Model 3, which used the TPI and slope rasters as
input returned the highest number of features intersecting both verified and training polygons
after the first learning pass, however, its accuracy also fell dramatically after clean-up. This was
unexpected, as the TPI and slope inputs have generally performed better than all the others.
Even with various versions of clean-up parameters, Model 3 had very poor post-clean-up results.
Model 4 had the fewest returned features after the initial learning pass. It had 10 fewer returned
features than Model 1, and all its other features were identical to those in Model 1. Changing the

#	Returned	
Features

#	Features	
Intersecting	
Verified	Sinks
(/12	total)

#	Features	
Intersecting	
Training	Data
(/29	total)

#	Returned	
Features

#	Features	
Intersecting	
Verified	Sinks
(/12	total)

#	Features	
Intersecting	
Training	Data
(/29	total)

Model	1
(Circle	15,	
DEM)

2847 10 20 898 9 20

Model	2
(Circle	15,	
Hillshade)

5090 9 26 632 4 8

Model	3
(Circle	15,	
TPI/slope)

5977 10 29 33 2 4

Model	4
(Circle	15,	
DEM,	30,000	
max	area)

2837 10 20 481 9 18

Model	5
(Pre-def	
Foveal	9,	
DEM)

2748 6 22 492 5 20

First	Learning	Pass Second	Learning	Pass

18

maximum allowable area had minimal impact because very few features above 30,000 ft² were
extracted to begin with. Model 5 performed relatively poorly by these metrics in the first
learning pass. After clean-up, the number of features in Model 5 that intersected verified sinks
fell in the middle of the other model results, but features that intersected training polygons tied
Model 1 for the highest.

Shape was also an important criterion for measuring model performance. After the first learning
pass, all the models performed relatively well at capturing verified polygons and training
polygons, but some were more precise than others. Model 2 required more digitizing because,
even in cases where it captured sinks, they often had erratic boundaries. Models 1 and 3 had the
most accurate shapes in the first learning pass. With the option of removing clutter based on
shape attributes, this precision will carry over into the second learning pass even if overall
accuracy declines. This is exemplified by Model 5 in Figure 5.

Figure 5: Cleanup of initial results layer. This refines model performance.

Aside from coincidence with definite or probable sinkholes, another important aspect of model
performance was the number of false positives it returned. Even after clean-up, most of the

19

models still produced an extremely high number of returned features for a 6.8 mi² area. It was
obvious that, while many were depressions, most of them were not sinkholes. Further clean-up
and learning passes could cut down on the number of false positives returned by a model, but
because of the large size range and variety of shape possibilities sinkholes have, false positives
will inevitably occur. Many of the false positives were easy to rule out by visually scanning the
imagery. Culverts were often extracted, as were other drainage features near houses. In some
instances, the building polygons extracted by LIDAR Analyst were not exact, so models
sometimes picked up corners or edges of buildings as sinkholes. Adding a buffer to the building
polygons for masking could alleviate this problem. In cases where fieldwork will be performed
irrespective of model results, false positives may not be problematic. For example, ground
truthing 15 sites would not take much longer than three sites as long as the study area had a
limited extent.

The problem of false negatives was more difficult to correct. This issue is best illustrated by
looking at the verified sinkholes the models consistently failed to detect. For example, after the
second learning pass, none of the models picked up the verified sinkholes seen in Figure 6a or
6b. However, all the models spotted the verified sinkholes in Figures 6c and 6d. (In figure 6c,
Model 3 did not align accurately with the verified sink, but it did pick up a small section.) It is
clear that the verified sinkhole polygons in Figures 6a and 6b do not have the same signature in
the TPI (or in the slope or hillshade rasters) as the verified sinkholes in 6c and 6d, or as the other
possible sinkholes viewable in the screenshots. The sinkholes appear lumpier in the TPI, slope,
and hillshade images, with more subtlety in their elevation variation compared to the dark,
closed, circular looking depressions that the models detected. The irregularity of sinkholes can
make them difficult to model, especially without narrowing the search to a more specific type of
sink. It is possible that particular kinds of sinkholes, like cover collapse, might be easier to
extract than a broad classification of sinkhole. It is also possible that the likelihood of the models
picking out anomalous features would remain high.

20

Figure 6: The polygons in Figures 6a and 6b represent the only verified sinkholes that were not
returned by any of the models. Compared to other examples of sinkholes, their elevation change
is much less dramatic. Figures 6c and 6d show the only verified sinkholes returned by all models
after the second learning pass. Both exhibit concentrated areas of lower elevation than the
surrounding area.

21

3 Identifying Sinkholes Using a Python-based ArcGIS Tool

Sinkholes are a common geologic hazard that impact road construction in Kentucky. The
purpose of this ArcGIS tool is to automatically recognize possible sinkholes from LIDAR data,
thus saving time and effort in the field. This tool was developed using python scripts and works
with ArcGIS 10.1 and above. The tool is provided as a compressed file,
LIDARSinkholeRecognitionTool.zip, which contains an ArcToolBox file (.tbx), four python
script files (.py), and four files needed for an automatic classification method. The files are
organized as follows (Figure 7):

Figure 7: File tree for the ArcGIS tool.

This tool partitions the sinkhole extraction process into three steps. The first operation extracts
surface depressions as polygons from either a DEM or LIDAR point clouds. The second step
removes non-sinkhole polygons using information on other surface features, such as hydrology
and transportation. The third operation applies a machine learning algorithm, called Random
Forests, to identify possible sinkholes from the remaining polygons.

3.1 Tool Installation

To install the tool, extract LIDARSinkholeRecognitionTool.zip to a specified location. After the
extraction is completed, compare the file tree with Figure 1 to ensure that all files are present.

The next step of installation is importing the tool into ArcMap. In ArcMap, open ArcToolbox
and right-click the topmost item, ArcToolbox, to open a menu (Figure 8).

22

Figure 8: Add Toolbox menu.

Select “Add Toolbox” to open “Add Toolbox” dialog box (Figure 9).

Figure 9: Add Toolbox dialog box.

Navigate to the location where the tool is located, select “LIDAR Sinkhole Recognition.tbx” and
click “Open”. In a few seconds, a new toolbox, “LIDAR Sinkhole Recognition,” appears in
ArcToolbox. Click the “+” next to the new toolbox. This reveals four script tools under the
“LIDAR Sinkhole Recognition” (Figure 10).

Figure 10: The LIDAR sinkhole recognition tool shown in ArcGIS.

23

The toolbox is now ready to go. Because each script tool relies on a python script file that is not
embedded in the tool, make sure that each one is linked to its corresponding script file (Table 3).
To check, right-click any of the script tools—choose “Properties…”, and click “Source” tab. The
script file will appear with its full path under “Script File” (Figure 11). If there are incorrect links
fix them using the button to the right.

Table 3: Script tools and the corresponding python scripts.

Script	tool	name	 Python	script	name	
Step	1a:	Extract	Depressions	from	DEM	 DEMDepressionExtration.py	
Step	1b:	Extract	Depressions	from	LIDAR	 LIDARDepressionExtration.py	
Step	2:	Remove	Non-Sinkholes	Based	on	Surficial	Features	 PolyRemovalSurficial.py	
Step	3:	Random	Forests	Classification	 RandomForestClassification.py	

Figure 11: Script tool properties dialog box showing name of the script file.

3.2 Tool Instruction

The tool partitions sinkhole recognition into three steps. Each one is described sequentially
below.

Step 1.

Begin by extracting surface depressions as polygons. Either a DEM or LIDAR point cloud
dataset is needed. Use �Step 1a: Extract Depressions from DEM� if a DEM is provided. This
is common given that LIDAR-derived DEMs are much easier to acquire than LIDAR point
clouds for the state of Kentucky. To extract surface depressions from a DEM, prepare a DEM
and have a File Geodatabase available to store outputs. Double-click the �Step 1a: Extract
Depressions from DEM� under the “LIDAR Sinkhole Recognition” to bring up the dialog box
(Figure 12).

24

Figure 12: Interface of script tool "Step 1a: Extract Depressions from DEM."

Detailed help is available for all script tools. To obtain help for an input item in a tool dialog
box, click the dialog area next to the item and the help will appear to the right. Input items with
a green mark next to them are required, and others are optional with default values provided.
These values can be adjusted from defaults to fit the needs of a particular analysis. Once all
inputs are entered, click “OK” and the tool will run. After the tool has executed, it will generate
two output items — a depression raster, called DepRaster, and a depression polygon feature,
named DepPolygon. Both are stored in the user-specified File Geodatabase. Figure 13 shows an
example of the results with DepRaster and DepPolygon plotted atop a DEM’s hillshading.

Figure 13: Example results of script tool "Step 1a: Extract Depressions from DEM."

25

The script tool, “Step 1b: Extract Depressions from LIDAR,” can be used to extract depression
polygons if LIDAR point clouds are available. To use this tool, prepare a LAS Dataset (.lasd)
and have a File Geodatabase available to store outputs. A LAS Dataset is used in ArcGIS to
process LIDAR data. Refer to ArcGIS Help for detailed instruction on creating a LAS dataset
from LIDAR data. Double click the�Step 1b: Extract Depressions from LIDAR� under the
“LIDAR Sinkhole Recognition�to bring up the dialog box (Figure 14).

Figure 14: Interface of script tool "Step 1b: Extract Depressions from LIDAR."

Compared to the script tool, “Step 1a”, this tool adds an additional function that creates a DEM
from LIDAR data. Once the DEM is created, users follow the same steps. Enter all the required
inputs (an LAS dataset and a File Geodatabase in this case) and modify optional inputs as
needed. Then, click “OK” to run the tool. After executing, the tool will generate three outputs: 1)
an elevation raster, called LasDEM; 2) a depression raster, called DepRaster; and 3) a depression
polygon feature, called DepPolygon. All outputs are stored under the File Geodatabase the user
specifies.

Step 2.

Many of the depression Polygons (DepPolygon) extracted during Step 1 are not sinkholes. Non-
sinkhole polygons may be ponds, stream channels, or man-made structures. The script tool,
“Step 2: Remove Non�Sinkholes Based on Surficial Features,�uses existing coverages on
surface features to remove non-sinkhole polygons. To use this tool, prepare coverages for
rivers/streams, lakes/ponds, roads, and land uses. Figure 15 represents the script tools interface.
Refer to the help for the script tool for instruction and possible sources for surficial coverages. If

26

the user has information about other surficial features, use the “Input Optional Filter Features”
box to add an additional feature into the process. Notice that the land uses must be in raster
format, while all other coverages should be polygons or polylines. The land use raster should be
cropped to the area of interest to avoid unnecessary computing time.

Figure 15: Interface of script tool "Step 2: Remove Non-Sinkholes Based on Surficial Features."

This tool will generate a new feature, “DepPolygonFiltered”, which contains the polygons that
are not filtered out by the surficial features. Figure 16 illustrates example results from this script,
showing some of the depression polygons have been filtered out (those shaded green).

27

Figure 16: Example results of script tool "Step 2: Remove Non-Sinkholes Based on Surficial
Features."

Step 3.

In this step, a machine learning algorithm called �Random Forests� is applied to classify the
remaining polygons into sinkholes and non�sinkholes. The Random Forests (RF) algorithm was
developed by Leo Breiman (2001) and Adele Cutler. The RF algorithm constructs multiple
classification trees (i.e., forming forests) using a training dataset. New data are then classified by
combining results from all classification trees through a voting process. A robust training dataset
is essential for accurate classification. This tool adopts a LIDAR sinkhole dataset for Floyds
Fork watershed (Zhu et al., 2014) as its training dataset. The Floyds Fork sinkhole dataset was
created using a depression extraction process identical to the Script Tool 1b, but the polygons
were classified manually through visual inspections. Field validation indicated the dataset’s
accuracy was between 80% and 93%. To run the RF classification, double click the script tool
“Step 3: Random Forests Classification.�The interface is shown in Figure 17. This script tool
requires the depression polygons (i.e., the depression raster generated in step 1a or step 1b) and
the location of the RF program. The folder should be called “RF_Classify” under folder
“LIDARSinkholeRecognitionTool.” (Refer to Figure 1 for more details). This tool will generate
two polygons features, "DepPolyFiltered_RF_Sink" for possible sinkholes and
"DepPolyFiltered_RF_NonSink" for likely non-sinkholes. Sample results from this script tool
are shown in Figure 18.

28

Figure 17: Interface of script tool "Step 3: Random Forests Classification."

Figure 18: Example results of script tool "Step 3: Random Forests Classification."

3.3 Tool Testing

The LIDAR sinkhole-recognition tool was tested on a 1.72 square mile area inside Floyds Fork
watershed, where 66 sinkholes (Figure 19a) have been previously mapped using LIDAR (Zhu et

29

al., 2014). The tool identified 83 possible sinkholes in this setting (Figure 19b). All 66 of the
previously mapped sinkholes were identified by this tool as sinkholes. Inspecting the 2012 6-inch
aerial images revealed the 17 false positives encompassed a variety of features.

Some of the false positives appeared on top of residential building roofs, which were likely
artifacts within the LIDAR data. Some were seen as constructed drains. One appeared above a
water-filled pond. This pond was apparently excluded from the NHD dataset. A few others
appeared in forested area and appeared to be possible sinkholes that were missed during earlier
mapping efforts.

Figure 19: Test results showing: a) sinkholes previously mapped; and b) sinkholes identified
from this tool.

3.4 Discussion

A Python-based ArcGIS tool was developed to recognize karst sinkholes using LIDAR data.
This tool was compatible with ArcGIS 10.1 and above as an ArcToolbox. A test case
demonstrated its promise at recognizing sinkholes from LIDAR data. When using this tool, users
should also pay attention to the following:

1. Although the test case demonstrated that this tool efficiently detects sinkholes, it also
misidentified other features as sinkholes (i.e., false positives). In all likelihood, the tool
will miss some sinkholes when applied to other areas. Yet, this tool can potentially
produce significant time and labor savings, reducing the amount of fieldwork required to
pinpoint sinkholes. But it is critical to remember that this tool cannot serve as a substitute

a)	 b)	

30

for the human eye. Results generated from this tool should be manually checked and
verified in the field to ensure accuracy.

2. This tool will function most effectively when applied to limited areas. We recommend
that DEM file size not exceed 100 Mb.

3. The team derived the training dataset from polygons of 500 square feet or larger.
Applying this training dataset to find smaller sinkholes may produce less accurate results.

31

4 Discussion

4.1 Recommendations for Future Sinkhole Modeling

There are several options for improving the performance of sinkhole models. The first option is
to continue tweaking model parameters in Feature Analyst until desirable results are achieved,
ideally with the same model for different areas, to ensure some degree of transferability for the
model. Experimenting with different training datasets, using different clean-up methods (i.e.,
doing more or less thorough clean-up of results), and selecting different ratios of correct to
incorrect features would be a great place to start. This would grant the user a clearer picture of
how modifying settings affects results, and subsequently would allow for more control.

When researchers closely examined the imagery during the clean-up process, it became apparent
that some of the vector layers used for masking did not line up precisely with the actual features
on the ground. This was particularly true for flowlines and bodies of water. Several of these
polygons were slightly offset from the actual features. Also, using a universal 30-foot buffer on
the roads shapefile produced different effects on small two-lane roads, interstates, and larger
highways. This is because the buffer extended out on either side of the road centerline, which
was of negligible width. Using the highest resolution data available for masking likely would
not make a significant difference in the results of this study, but would slightly reduce the
amount of clean-up required. In other cases, depending on the features being modeled and their
proximity to masked layers, using high resolution data for masking could be critical.

It might be worthwhile to consider the size and shape attributes of different types of sinkholes
(i.e., solution, subsidence, cover-collapse) and what distinguishes them from one another in
DEMs. If significant differences could be discerned between these broad classes of sinkholes in
the DEMs, creating different models that reflect the classes’ individual characteristics would
eliminate many false positives and reduce the excessively high number of returned features seen
in the models.

Conducting fieldwork to verify training data and results would prove invaluable for refining the
models. First, it would provide the essential function of confirming or disconfirming that
training polygons are verified sinkholes. Second, it would be extremely beneficial to creator of
the models to see what false positive results look like on the ground; then, better steps to
eliminate them could be taken. It is possible that a mask (based on slope, pixel values, and other
attributes) could be created to exclude the majority of landform features that are false positives.
However, discerning the characteristics this mask might have would likely require spending
considerable time in the field checking the several false positive features returned by the models.

32

For any large-scale sinkhole modeling projects (involving around fifty or more tiles), careful
thought should be put into how processing will be set up. Experience from this project suggested
that processing times and capacity to model sinkholes were more feasible on an area- by-area, or
project-by-project basis. It would be possible to model sinkholes for a region of Kentucky, or for
the entire state; however, it would be a massive undertaking. Even processing an area of 100
tiles (approximately 40 mi2) would require a plan for subdividing the data, either to manually
create multiple DEMs to encompass the entire area, or for specifying to the batch processing tool
how to handle the dataset. Using the batch processing tool can be convenient, but it will also
require greater organization and forethought than running one process on one dataset at a time.

4.2 Other Modeling Features

With an increasing amount of LIDAR data available for much of the state of Kentucky, further
exploring Feature Analyst’s modeling capabilities for landscape features other than sinkholes
would be worthwhile. The software has components — unexplored in this study —geared
toward extracting larger land cover features, such as wetlands. The Feature Selector in the
Supervised Learning dialog has options for Land Cover Feature and Water Mass Feature. Either
of these Feature Selector options could provide a good starting point to extract wetland areas,
depending on the time of year and degree of saturation of the soil. Choosing one of these (from
the list of six other options) automatically sets the other Supervised Learning parameters to
optimize potential for extracting these types of features.

LIDAR and Feature Analyst offer several possibilities for extracting trees and forest areas from
LIDAR-derived DEMs. As described previously (and illustrated in Figure 1), LIDAR Analyst
can automatically extract individual trees and forest areas and symbolize them with points and
polygons, respectively. This tool lets users specify settings for minimum tree height, typical tree
height, and the size at which to aggregate a forest area. The tool also provides two different
extraction methods, one with a fixed window search that is better for more densely forested
regions, and another with a variable search window, which can be used to obtain more accurate
crown widths. For further control over tree and forest parameters, there are settings that can be
adjusted during the bare earth extraction, before using the tree and forest extraction tool. Bare
earth extraction lets the user specify the minimum ground slope for tree regions, the minimum
texture, minimum difference between point returns, sampling frequency, and minimum forest
size. These options for bare earth and tree extraction are valuable because they require minimal
user input, unlike the training and clean-up processes in Feature Analyst.

Culverts — specifically stone culverts — are another feature of interest on transportation
projects that Feature Analyst could be used to model. Some work with culvert modeling was
done in this project, but the work was not sufficient to determine whether the software can
reliably extract these features. However, researchers gained insights into the initial steps of
modeling. Creating training data for the culvert models was more straightforward than for the

33

sinkhole models because many of the culverts were clearly visible in the ArcGIS basemap
imagery. Training polygons can be digitized by identifying intersections between stream and
road vector data, and then imagery can be examined to check for a culvert. Input
Representations exist to model linear and built-in features in size classes that would encompass
most culverts. It is unlikely that Feature Analyst would be able to differentiate stone culverts
from other types of culverts using a DEM or DEM-derived raster. If the majority of culverts in
an area were modeled, it is possible that other GIS methods could be employed to determine the
likelihood of a culvert being constructed of stone.

34

5 Conclusions

This project illustrated several ways in which LIDAR and Feature Analyst have great potential
for processing and analyzing the significant quantities of LIDAR data available for the state of
Kentucky. The research uncovered circumstances where each of the software’s performance
could be lacking. The sinkhole modeling demonstrated that it was important to clearly define the
features to be modeled with Feature Analyst. Modeling for a group of features with highly
variable size and shape characteristics was not ideal, but separating the features into more
specific categories might be a fruitful strategy. The conclusion was that Feature Analyst had
potential for modeling regularly shaped and sized features (cf. sinkholes).

The main focus of this project was modeling sinkholes, and less attention was focused on first
and last return rasters, bare Earth DEMs, buildings, trees, and forest areas—features that were
automatically extracted from the LIDAR data with minimal work on the part of the user. A great
amount of time could be saved and innumerable projects could be built from those capabilities
alone. Notably, while Feature Analyst was more unique in the options it afforded a user, some of
the more basic functions of LIDAR Analyst were available for free with the LAStools program2,
or the LAStools Arc Toolbox. In the pilot projects, LAStools was used to merge multiple
LIDAR tiles into a single .las file because this function was absent from LIDAR Analyst.
LAStools was less user friendly than LIDAR Analyst, but it has an extensive online support
community and ample customization options for users familiar with Python. Basic data viewing
and management, point classification, and creation of DEMs were relatively straightforward in
LAStools. Performing more advanced extractions (i.e. buildings and trees) required a much
more complex work flow. For projects that prioritize the extraction of buildings, trees, and forest
regions, having LIDAR Analyst would be beneficial.

Before attempting large-scale projects with LIDAR and Feature Analyst, Condor’s distributed
batch processing software would have to be successfully installed. As noted earlier, our research
team could not successfully install it. While Textron tech support and programmers were willing
to help, they were never able to provide a solution. However, the batch processing capability
built into LIDAR and Feature Analyst would be adequate for smaller projects.

2 Available at http://www.cs.unc.edu/~isenburg/lastools/.

35

6 Works Cited

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

Doctor, D. H., & Young, J. A. (2013). An evaluation of automated GIS tools for delineating
karst sinkholes and closed depressions from 1-meter LIDAR-derived digital elevation
data. National Cave and Karst Research Institute Symposium 2: 13th Sinkhole
Conference. Retrieved from:
http://http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=1156&context=sinkhol
e_2013.

Jenness, J., Brost, B., & Beier, P. (2013). Land Facet Corridor Designer: Extension for
ArcGIS. Jenness Enterprises. Retrieved from:
http://www.jennessent.com/arcgis/land_facets.htm.

Zhu, J., Taylor, T.P., Currens, J.C., & Crawford, M.M. (2014). Improved karst sinkhole
mapping in Kentucky using LIDAR techniques: a pilot study in Floyds Fork Watershed.
Journal of Cave and Karst Studies, 76(3), 207–216.

